首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6299篇
  免费   734篇
  国内免费   1923篇
化学   4300篇
晶体学   238篇
力学   2042篇
综合类   47篇
数学   330篇
物理学   1999篇
  2024年   15篇
  2023年   113篇
  2022年   252篇
  2021年   301篇
  2020年   279篇
  2019年   200篇
  2018年   153篇
  2017年   286篇
  2016年   335篇
  2015年   280篇
  2014年   371篇
  2013年   465篇
  2012年   425篇
  2011年   457篇
  2010年   426篇
  2009年   469篇
  2008年   466篇
  2007年   530篇
  2006年   412篇
  2005年   390篇
  2004年   388篇
  2003年   341篇
  2002年   263篇
  2001年   201篇
  2000年   181篇
  1999年   143篇
  1998年   130篇
  1997年   116篇
  1996年   104篇
  1995年   75篇
  1994年   73篇
  1993年   43篇
  1992年   60篇
  1991年   41篇
  1990年   31篇
  1989年   21篇
  1988年   28篇
  1987年   21篇
  1986年   23篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1979年   8篇
  1978年   1篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1957年   2篇
排序方式: 共有8956条查询结果,搜索用时 27 毫秒
61.
李超  乔瑶雨  李禹红  闻静  何乃普  黎白钰 《化学进展》2021,33(11):1964-1971
金属有机框架(MOFs)具有大量的孔隙结构和活性位点,在气体吸附、催化、医疗等领域均发挥了巨大的作用。MOFs是晶体粉末,具有脆性较大、在水中易分解和不易回收等缺点,从而限制了其应用。通过MOFs与柔性高分子的复合,特别是与水凝胶的复合,极大地改善了复合材料的柔顺性、可回收和可加工性等特性,进一步拓宽了MOFs的应用领域。本文详细阐述了基于水凝胶MOFs原位生成法、MOFs /水凝胶同时生成法和水凝胶包裹MOFs法等三种不同方法制备MOFs/水凝胶复合材料的研究进展,并对上述三种制备方法的特点及其产物特征进行了总结,进一步归纳了复合材料在生物医药、催化、废水处理和气体吸附等领域的应用。最后,对MOFs/水凝胶复合材料制备方法的改进和复合材料应用前景进行了深入讨论和展望。  相似文献   
62.
锌具有原料丰富、质量轻便、金属导电性与延展性好以及理论比容量高等优势,可以作为绿色可充电电池的理想电极材料。其中,以中性或弱酸性水溶液为电解质、锌为负极的锌基水系电池具有安全性高、电池材料廉价无毒、制备工艺简单、环境友好等特点,在储能和动力电池领域具有极高的应用价值和发展前景。但电池充放电过程中伴随的锌枝晶、析氢、腐蚀、钝化等问题限制了其实际应用。本文综述了锌基水系电池负极存在的问题及当前的解决策略,并对其负极研究发展方向进行了展望。  相似文献   
63.
王玉冰  陈杰  延卫  崔建文 《化学进展》2021,33(5):838-854
共轭微孔聚合物(CMPs)是一类有机多孔聚合物,与常规共轭聚合物或多孔材料相比,其最大的特点是既有π共轭骨架又具有大量微孔。这类材料在解决能源和环境问题方面显示出巨大的潜力,已在气体吸附、非均相催化、发光材料、化学传感器、电能存储和生物杂化物等领域显示出巨大的应用前景。目前已开发出多种用于CMPs结构单元设计与合成的新方法,用于制备具有不同结构和特定性质的多种CMPs,有效推动了该领域的快速发展。本综述总结了CMPs的理论模型和结构设计,合成原理、常用合成方法和影响因素分析,以及CMPs在各领域的应用。  相似文献   
64.
Graphdiyne(GDY),which is composed of sp2-/sp-hybridized carbon atoms,has attracted increasing attention.In the structure of GDY,the existence of large triangular-like pores,well dispersed electron-rich cavities as well as a large π-conjugated structure endows GDY with a natural bandgap,fast electron/ion transport,and tunable electronic properties.These unique features make GDY competitive in areas of gas separation and capture,electronics,detectors,catalysts,biomedicine and therapy,and energy-related fields.Benefiting from the facile synthesis method,various GDY structures and GDY-based composites have been successfully prepared and show great potential in the practical application of energy storage and catalysis areas.Here,this review aims at providing a timely and comprehensive update on the preparation and application of GDY materials.The current development of GDY materials in various electrochemical fields especially in energy conversion,energy storage,and catalysis is mainly summarized.Moreover,the potential development prospects are also discussed.  相似文献   
65.
电催化水分解制氢是可以形成闭环的生产过程, 起始原料与副产物均为水、 过程清洁无污染, 是极具希望的产氢策略. 目前制约其发展的瓶颈之一是价格昂贵的Pt基贵金属催化剂. 为推动电催化分解水制氢的普及, 亟待开发低成本非贵金属催化剂. 在众多备选非贵金属催化材料中, 纳米层状结构二硫化钼(MoS2)因催化效果可期、 价格低而获得了广泛关注. 然而, 通常条件下易于获得的层状结构2H相MoS2大面积的基面部分显示惰性, 仅在片层边缘处存在少量活性位点, 且导电性较差, 因而尚不能替代Pt基催化剂, 而如何增加其活性位点数量和提高其导电性成为亟待解决的问题; 另一方面, 1T相MoS2虽然活性高、 导电性好, 但却存在制备困难及稳定性差的问题. 鉴于此, 研究者通过对纳米MoS2进行掺杂改性实现了其活性与稳定性的有效提升. 本文对非贵金属纳米MoS2催化剂掺杂改性的方法、 机理及其电催化水解制氢性能的相关研究进行了总结与讨论. 作为典型的非贵金属电解水析氢催化剂, MoS2具有巨大发展潜力, 本文能够对相关非贵金属催化剂的研发提供有益的参考.  相似文献   
66.
近年来, 过渡金属硫族化合物(TMDs)作为一种新兴的二维材料, 因其独特的层状结构及电学特性成为超级电容器电极材料的理想候选者之一. 本文介绍了二维TMDs的常用合成方法, 阐述了钼基、 钨基和钒基等TMDs在超级电容器中的研究进展, 分析了形貌、 尺寸和改性方法等因素对TMDs材料电化学性能的影响, 并对TMDs在超级电容器领域的工业化应用和挑战进行了总结与展望.  相似文献   
67.
在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.  相似文献   
68.
基于反式 1,4-聚异戊二烯(TPI)的形状记忆性能, 以聚氨酯海绵为基底, 包覆TPI制备出了一种具有疏水超亲油特性的三维多孔形状记忆海绵. 由于这种海绵具有良好的形状记忆特性, 可以通过反复按压/恢复过程, 实现对海绵孔径在微米尺寸(约875 μm)与纳米尺寸(约450 nm)间可逆调控. 利用材料特殊的浸润特征及其可控的孔尺寸, 进一步研究了其在油-水分离中的应用. 研究结果表明, 微米尺寸大孔径海绵有利于对不相溶油-水混合物进行快速高效分离, 而纳米尺寸小孔径海绵则有利于对乳液混合物进行分离, 实现了同一材料同时满足不相溶油-水混合物及乳液体系的分离要求.  相似文献   
69.
本文采用溶剂热、原位聚合和真空抽滤相结合的方法制备了用于超级电容器的细菌纤维素/镍钴硫化物/聚吡咯(BC/CoNi2S4@PPy)柔性电极材料,通过X射线衍射、场发射扫描电镜、红外光谱、氮气吸脱附、拉伸强度和接触角表征了材料的形貌结构、组成、机械性能和亲水性,并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能。结果表明,表面含氧官能团丰富的BC纤维网络结构对氧化还原活性物质CoNi2S4的生长和导电聚合物PPy的分布具有引导作用,CoNi2S4均匀分布在BC网络中,且PPy均匀包覆在BC纤维和CoNi2S4纳米球表面构成具有丰富孔隙结构的三维导电网络,使得该复合材料具有较好的机械性(抗拉强度达28.0±0.1 MPa)、亲水性(对6 mol·L-1 KOH的瞬间接触角为43.6°)及良好的导电性。该电极材料在1 A·g-1下比电容高达2670 F·g-1,充放电循环10000次后比电容的保持率为82.73%,且经1000次反复弯曲后电化学性能保持不变。此外,将其与活性炭组成的非对称超级电容器,在1 A·g-1下比电容为1428 F·g-1,最高能量密度和功率密度分别达49.8 Wh·kg-1和741.8 W·kg-1。  相似文献   
70.
An easy and delicate approach using cheap carbon source as conductive materials to construct 3D sequential porous structural Na3V2(PO4)3/C(NVP/C)with high performance for cathode materials of sodium ion battery is highly desired.In this paper,the NVP/C with 3D sequential porous structure is constructed by a delicate approach named as“cooking porridge”including evaporation and calcination stages.Especially,during evaporation,the viscosity of NVP/C precursor is optimized by controlling the adding quantity of citric acid,thus leading to a 3D sequential porous structure with a high specific surface area.Furthermore,the NVP/C with a 3D sequential porous structure enables the electrolyte to interior easily,providing more active sites for redox reaction and shortening the diffusion path of electron and sodium ion.Therefore,benefited from its unique structure,as cathode material of sodium ion batteries,the 3D sequential porous structural NVP/C exhibits high specific capacities(115.7,88.9 and 74.4 mA·h/g at current rates of 1,20 and 50 C,respectively)and excellent cycling stability(107.5 and 80.4 mA·h/g are remained at a current density of 1 C after 500 cycles and at a current density of 20 C after 2200 cycles,respectively).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号